skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Sung, Baeckkyoung"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sung, Baeckkyoung (Ed.)
    Collective response to external directional cues like electric fields helps guide tissue development, regeneration, and wound healing. In this study we focus on the impact of anisotropy in cell shape and local cell alignment on the collective response to electric fields. We model elongated cells that have a different accuracy sensing the field depending on their orientation with respect to the field. With this framework, we assume cells are better sensors if they can align their long axes perpendicular to the field. Elongated cells often line up with their long axes in the same direction — “nematic order” – does a nematic cell-cell interaction allow groups of cells to share information about their orientation to sense fields more accurately? We use simulations of a simple model to show that if cells orient themselves perpendicular to their average velocity, alignment of a cell’s long axis to its nearest neighbors’ orientation can in some circumstances enhance the directional response to electric fields. We also show that cell-cell adhesion modulates the accuracy of cells in the group. 
    more » « less
    Free, publicly-accessible full text available June 25, 2026
  2. Sung, Baeckkyoung (Ed.)
    Cells and microorganisms are motile, yet the stationary nature of conventional microscopes impedes comprehensive, long-term behavioral and biomechanical analysis. The limitations are twofold: a narrow focus permits high-resolution imaging but sacrifices the broader context of organism behavior, while a wider focus compromises microscopic detail. This trade-off is especially problematic when investigating rapidly motile ciliates, which often have to be confined to small volumes between coverslips affecting their natural behavior. To address this challenge, we introduceTrackoscope, a 2-axis autonomous tracking microscope designed to follow swimming organisms ranging from 10μmto 2mmacross a 325cm2area (equivalent to an A5 sheet) for extended durations—ranging from hours to days—at high resolution. UtilizingTrackoscope, we captured a diverse array of behaviors, from the air-water swimming locomotion ofAmoebato bacterial hunting dynamics inActinosphaerium, walking gait inTardigrada, and binary fission in motileBlepharisma.Trackoscopeis a cost-effective solution well-suited for diverse settings, from high school labs to resource-constrained research environments. Its capability to capture diverse behaviors in larger, more realistic ecosystems extends our understanding of the physics of living systems. The low-cost, open architecture democratizes scientific discovery, offering a dynamic window into the lives of previously inaccessible small aquatic organisms. 
    more » « less